Pion Decay-at-Rest Neutrino Sources for Precision Studies of the Standard 3x3 Neutrino Paradigm

Snowmass Workshop on Frontier Capability
Brookhaven National Lab
April 17, 2013

Georgia Karagiorgi, Columbia U.

(Two of) Outstanding Questions in Neutrino Physics

1. CP violation

Potential CP-violation in the lepton sector is accessible through three-neutrino mixing:

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \times \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \times \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$c_{ij} \equiv \cos \theta_{ij}$$

 $s_{ii} \equiv \sin \theta_{ii}$

δ_{CP} : Fundamentally significant parameter:

- Last remaining unknown parameter in standard 3x3 neutrino mixing
- 2) Related to matter-antimatter asymmetry via neutrino mass models and Leptogenesis

We need to measure this!

(Two of) Outstanding Questions in Neutrino Physics

1. CP violation

2. Sterile neutrinos

Additional, non-weakly interacting neutrino species which may be responsible for several "short-baseline anomalies"

Several experimental hints of oscillations through sterile neutrino state with $\Delta m^2 \approx 1 \text{ eV}^2$:

- LSND / MiniBooNE v_e / $\overline{v_e}$ appearance
- Reactor \overline{v}_e disappearance ("Reactor Anomaly")
- Radioactive source v_e disappearance
- But still no indication of v_{μ} disappearance

Establishing the existence of sterile neutrinos would be a major result for particle physics, but need definitive experiments

We need to address this!

(Two of) Outstanding Questions in Neutrino Physics

1. CP violation

2. Sterile neutrinos

High-precision measurements:

Oscillation probability differences of O(1%)

→ need large detector(s), high intensity beam(s), and controlled systematics.

Needs are especially challenging for CP violation search.

Step 1: Sterile neutrino (short baseline) oscillations: IsoDAR

Step 2: CP-violating (long baseline) oscillations: DAE δ ALUS

→ Higher beam intensity needs: Requires R&D → Future

Searching for CP violation ($\delta_{CP} \neq 0$)

 $(\overline{V_{\mu}}) \rightarrow (\overline{V_{e}})$ oscillations at 2π E/L $\approx |\Delta m^{2}_{31}|$ are sensitive to δ_{CP}

Vacuum oscillation probability:

$$\begin{split} P(\begin{tabular}{l} \overline{\boldsymbol{\mathcal{V}}}_{\mu} \begin{tabular}{l} \begin{tabular}{l} P(\begin{tabular}{l} \overline{\boldsymbol{\mathcal{V}}}_{\mu} \begin{tabular}{l} \begin{tabula$$

$$\Delta_{ij} = 1.27 \Delta m_{ij}^2 L[m]/E_{\nu}[MeV]$$

Searching for CP violation ($\delta_{CP} \neq 0$)

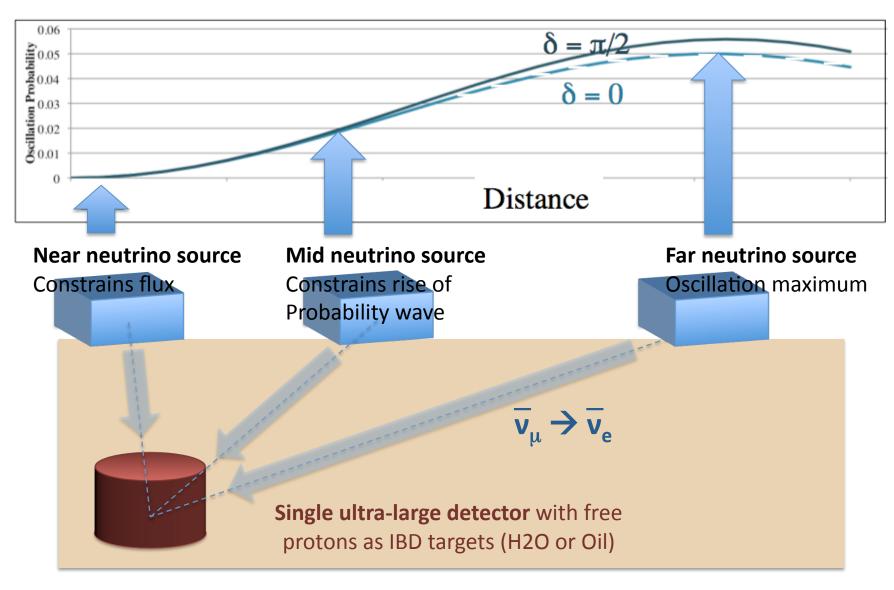
DAE δ ALUS approach: Use L/E-dependence of P($\overline{V}_{\!\mu}$ \to $\overline{V}_{\!e}$) to extract $\delta_{\sf CP}$

Vacuum oscillation probability:

$$\Delta_{ij} = 1.27 \Delta m_{ij}^2 L[m]/E_{\nu}[MeV]$$

Searching for CP violation ($\delta_{CP} \neq 0$)

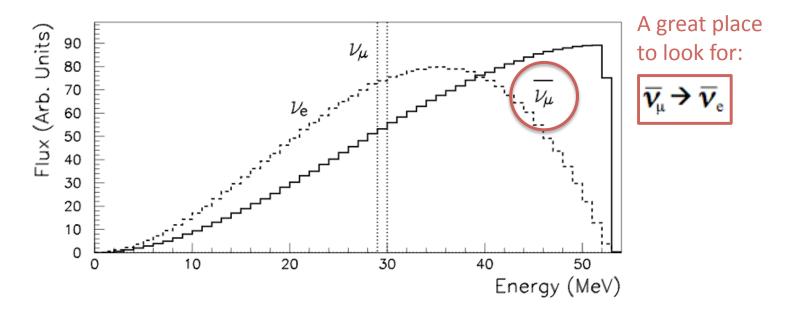
Traditional approach to $(\overline{\mathcal{V}}_e)$ appearance:


<u>Single</u> neutrino source + <u>multiple</u> neutrino detectors at different baselines

DAE δ ALUS approach to $\overline{\mathcal{V}}_{e}$ appearance:

Multiple neutrino sources at different baselines + single neutrino detector

* J.M Conrad and M. H. Shaevitz, PRL 104, 141802 (2010)


DAE δ ALUS Search for CP violation ($\delta_{CP} \neq 0$)

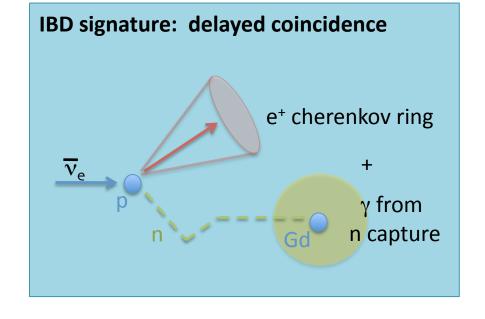
DAEδALUS Antineutrino Source(s)

 $\pi^{\scriptscriptstyle +}$ Decay-at-Rest (DAR) neutrino source:

Beam \overline{v}_e contribution (π^- decay) is insignificant: 0.01 %

Weak process: shape driven by nature and well-predicted Only normalization varies from source to source

DAEδALUS Detector


Oscillation signal: IBD excess

Look for $\nabla_{\mu} \rightarrow \nabla_{e}$ via inverse beta decay (IBD):

$$\overline{v}_{e}$$
+p \rightarrow n+e⁺

Ideal process for appearance signal:

- 1. Well-known cross section (<1%)
- 2. Large cross section
- 3. Neutrino energy reconstruction
- 4. Delayed coincidence

Requires free protons for neutron tagging:

- ✓ Gd-doped water cherenkov
- ✓ Scintillator detector
- X Liquid Argon TPC

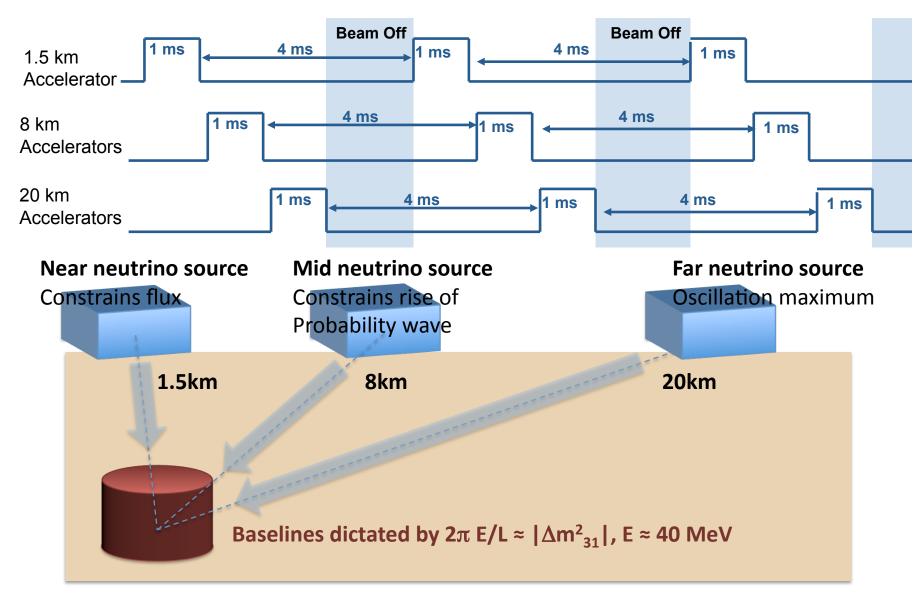
Measurement Strategy

Using the **near** neutrino source measure **absolute flux normalization** with $\nu_{\rm e}$ -e events to ~1%, Also, measure the $\nu_{\rm e}$ C ($\nu_{\rm e}$ O) event rate.

At far and mid-distance neutrino source, Compare predicted to measured $v_e C$ ($v_e O$) event rates to get the **relative flux normalizations between 3 sites**

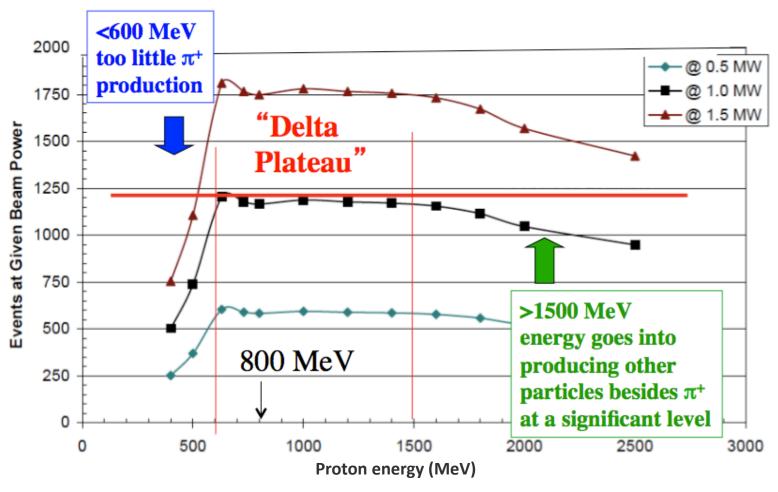


For all three neutrino sources, given the known flux, fit for the $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ signal with δ as a free parameter


Beam requirements (I)

High power beam \rightarrow High signal event statistics Need: ~4E22 \bar{v}_{μ} /accelerator/year

Beam power ratio optimized for physics given isotropic flux dependence: Near:Mid:Far ~ 1:2:5


Beam requirements (II)

Beam requirements (III)

What proton energy is required?

There is a "Delta plateau" where one can trade energy for current to get the same rate of v/MW

800 MeV Protons from Cyclotrons

DAEdALUS uses multiple "Accelerator Units" to produce its DAR beam, constructed out of Cyclotrons:

Motivation for technology choice:

- Inexpensive,
- Practical below ~1 GeV
- Good if you don't need short timing structure
- Typically single energy
- Taps into existing industry

Injector Cyclotron (Compact, resistive)

Primary Cyclotron (Separated sector, super-conducting)

Target/shielding

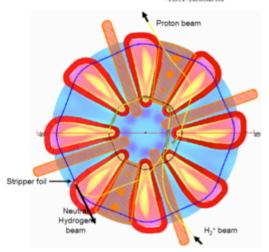
See talk by J. Alonso

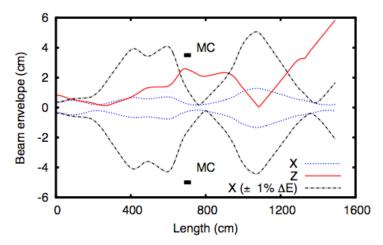
Strong R&D Effort within Collaboration

arXiv.org > physics > arXiv:1207.4895

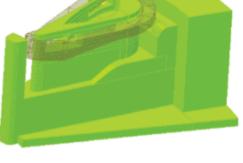
Physics > Accelerator Physics

Multimegawatt DAEδALUS Cyclotrons for Neutrino Physics


M. Abs^j, A. Adelmann^{b,*}, J.R. Alonso^c, W.A. Barletta^c, R. Barlow^h, L. Calabretta^f, A. Calanna^c, D. Campo^c, L. Celona^f, J.M. Conrad^c, S. Gammino^f, W. Kleeven^j, T. Koeth^a, M. Maggiore^c, H. Okuno^g, L.A.C. Piazza^c, M. Seidel^b, M. H. Shaevitz^d, L. Stingelin^b, J. J. Yang^c, J. Yeckⁱ

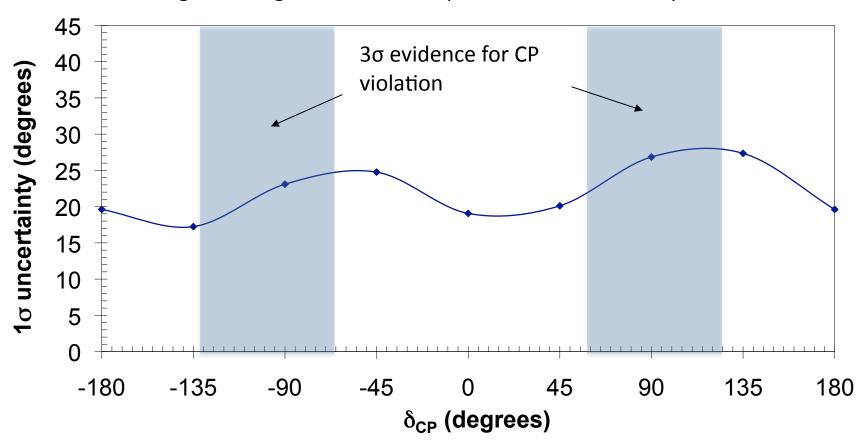

^aInstitute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland, 20742
^bPaul Scherrer Institut, CH-5234 Villigen, Switzerland

 $^cDepartment\ of\ Physics,\ Massachusetts\ Institute\ of\ Technology$ $^dColumbia\ University$


^eIstituto Nazionale di Fisica Nucleare - LNL ^fIstituto Nazionale di Fisica Nucleare - LNS ^gRiken

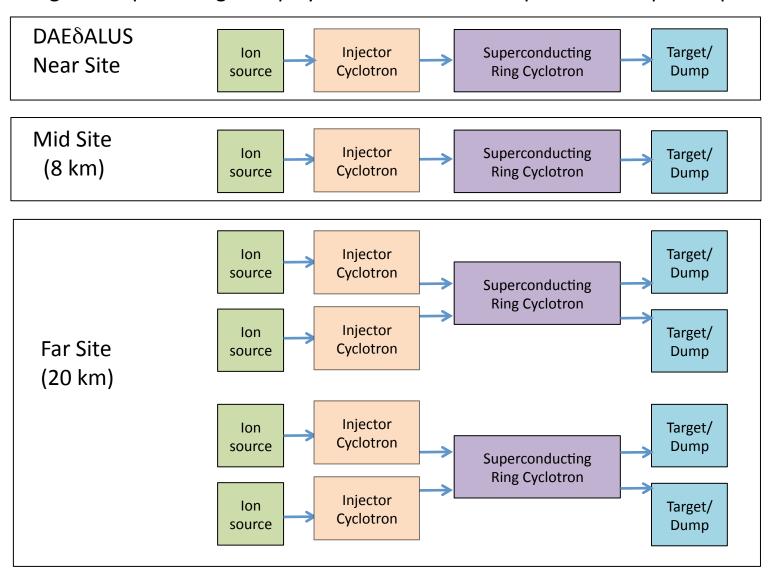
^hHuddersfield University, Queensgate Campus, Huddersfield, HD1 3DH, UK
ⁱIceCube Research Center, University of Wisconsin, Madison, Wisconsin 53706
^jIBA-Research

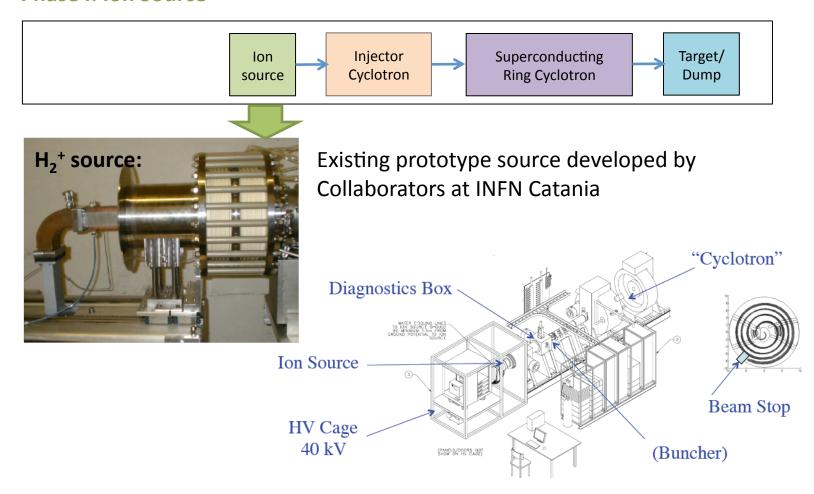
See talk by J. Alonso



The DAEδALUS Experiment: Detector Options

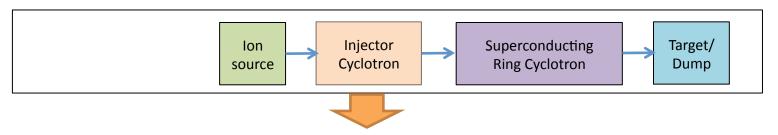
The DAEdALUS Experiment: Detector Options


E.g.: Coverage of CP violation parameter at LENA, 10 years


This gets even better if it can be combined with conventional beam measurements!

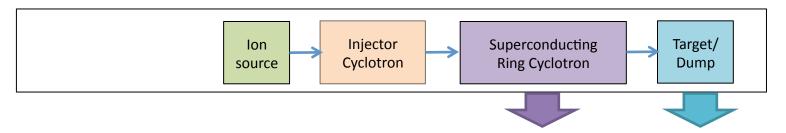
The DAEdALUS Experiment: Configuration

Design Principle: "Plug-and-play" → Allows for multi-phase development plan



Phase I: Ion Source

Beam undergoing characterization tests at Best Cyclotrons, Inc. in Vancouver


Phase II: Injector Cyclotron

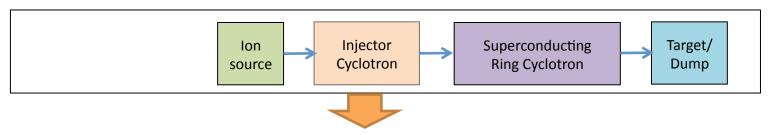
Efforts paired with **ISODAR** experiment development:

IsoDAR: Isotope Decay-at-Rest Experiment to search for sterile neutrino oscillations

Phases III & IV:

- 1. Demonstrate & establish the system
- 2. Reach high-power goals

Additional Physics Opportunities:

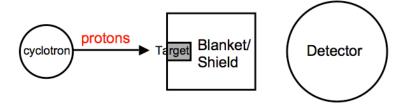

With a new accelerator facility (near, mid), opportunities for new experiments/additional physics searches:

[Contributed ideas:]

- Short-baseline neutrino oscillation waves in ultra-large liquid scintillator detectors Agarwalla, S. et. al. JHEP 12 (2011), 85
- Coherent neutrino scattering in dark matter detectors Anderson A., et. al. Phys. Rev. D 84, 013008 (2011)
- Active-to-sterile neutrino oscillations with neutral current coherent neutrino scattering Anderson, A. et. al. Phys. Rev. D 86, 013004 (2012)
- Measurement of the weak mixing angle with neutrino-electron scattering at low energy Agarwalla, S. and P. Huber JHEP 8 (2011), 59

Also, DAE δ ALUS detector requirements overlap with < 100 MeV physics searches (supernova neutrinos, proton decay, ...)

Phase II: Injector Cyclotron



Efforts paired with **ISODAR** experiment development:

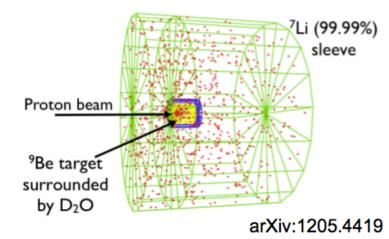
IsoDAR: Isotope Decay-at-Rest Experiment to search for sterile neutrino oscillations

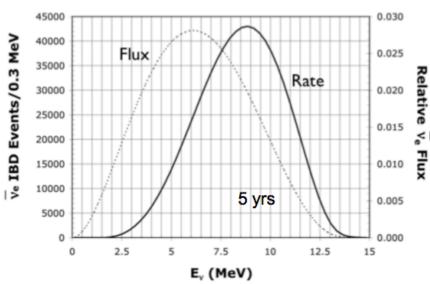
Several directions for next generation sterile neutrino search experiments:

- Multi-detector accelerator neutrino beam experiments
- Very short baseline (VSBL) experiments with compact neutrino sources:
 - High intensity $\overline{\nu}_e$ source using β -decay at rest of ⁸Li isotope \Rightarrow IsoDAR
 - ⁸Li produced by high intensity (10ma) proton beam from 60 MeV cyclotron
 ⇒ being developed as prototype injector for DAEδALUS cyclotron system
 - Put a cyclotron-isotope source near one of the large (kton size) liquid scintillator/water detectors such as KAMLAND, SNO+, Borexino, Super-K....

- Physics measurements:
 - $\overline{\nu}_{\rm e}$ disappearance measurement in the region of the LSND and reactorneutrino anomalies.
 - Measure oscillatory behavior within the detector.

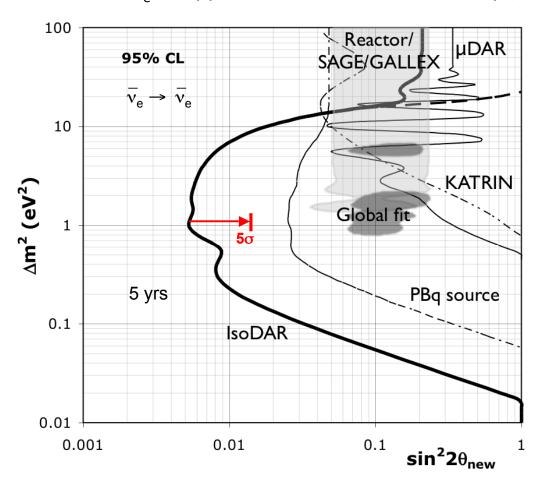
M. Shaevitz

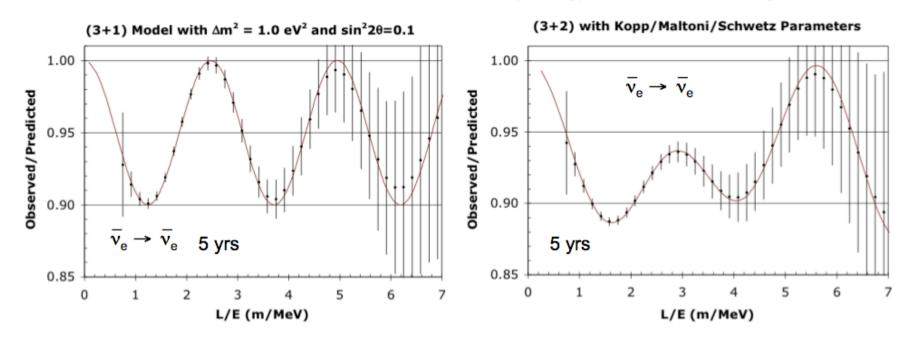

Phys Rev Lett 109 141802 (2012) arXiv:1205.4419


• p (60 MeV) +
$${}^{9}\text{Be} \rightarrow {}^{8}\text{Li} + 2\text{p}$$

- plus many neutrons since low binding energy
- n + ⁷Li (shielding) → ⁸Li

•
$$^8\text{Li} \rightarrow ^8\text{Be} + \text{e}^- + \overline{\nu}_{\text{e}}$$


- Mean \overline{v}_e energy = 6.5 MeV
- $-2.6 \times 10^{22} \ \overline{\nu}_e$ / yr
- Example detector: Kamland (900 t)
 - Use IBD $\overline{v}_e + p \rightarrow e^+ + n$ process
 - Detector center 16m from source
 - ~160,000 IBD events / yr
 - 60 MeV protons @ 10ma rate
 - Observe changes in the IBD rate as a function of L/E


M. Shaevitz

IsoDAR \overline{v}_{e} disappearance oscillation sensitivity (3+1):

5 σ (discovery) sensitivity to parameters allowed by short-baseline reactor measurements!

Observed/Predicted event ratio vs L/E including energy and position smearing

IsoDAR's high statistics and good L/E resolution has potential to distinguish between simple (left) and more advanced (right) sterile neutrino oscillation models.

M. Shaevitz

Conclusions

The path from IsoDAR \rightarrow DAE δ ALUS,

involving high-power cyclotrons for the production of pion DAR neutrino sources, provides a strong ongoing R&D program

and a rich physics program which can address urgent neutrino questions, including sterile neutrino oscillations (next few years) and CP violation in the neutrino sector (next 10+ years),

and provides opportunities for neutrino coherent scattering measurements weak mixing angle measurements and other physics.